Junior Chemistry Challenge 2025

Mark Scheme

Question 1 – Multiple Choice

- a) **B** $-\frac{3}{2}n$ b) $A - Cu^{2+}$ and CrO_4^{2-}
- c) E Si
- d) $E Mg^{2+}$
- e) **C** The fractionating column provides j) **D** Cl₂; H₂; NaOH a series of condensation and reevaporation steps, creating a temperature gradient where components with lower boiling points rise further up the column.

f) **C** – 5

g) \mathbf{E} – Twice the amount of CO₂ (g) produced in half the amount of time.

- h) $\mathbf{C} Mg$
- i) $\mathbf{D} \mathbf{NH}_4\mathbf{NO}_3$

Question	Answer	Additional Guidance	Mark
2(a)	Oxidation (1)		1
2(b)	1 st Mark, multiplying each <i>m/z</i> by correct abundance:	The values 3420 and 140 do not	3
	(24 x 100) + (25 x 20) + (26 x 20) = 3420	need to be explicitly calculated to	
		score M1 and M2 respectively.	
	2 nd Mark, deducing total abundance:		
	100 + 20 + 20 = 140	Correct answer without working	
		scores 3	
	3 rd Mark, correct answer:	ALLOW any level of precision	
	3420/140 = 24.43	except 24	
		34.2 scores 1	

2(c)(i)	One line at 63 <i>m/z</i> and one line at 65 <i>m/z</i> only (1)	IGNORE any lines at 31.5 and 32.5	2
		but cannot score the first mark if	
	63/65 line heights in a 70:30 ratio (1)	any other lines are present.	
		M2 dependent on M1	
		ALLOW points instead of lines	
2(c)(ii)	⁶³ Cu ²⁺ (1)	Cu ²⁺ with no clear isotopic	2
	OR	distinction scores 1	
	⁶³ Cu with z = 2 (1)	'Both isotopes are 2+' OWTTE	
		scores 2	
	⁶⁵ Cu ²⁺ (1)		
	OR		
	⁶⁵ Cu with z = 2 (1)		
2(d)	Peaks at 79 and 81 the same height/abundance/both have a relative abundance of 20 (1)		1
2(e)	⁷⁹ Br ₂ ⁺ (1)	Just Br ₂ ⁺ with no reference to	3
		isotopes scores 1	
	⁷⁹ Br ⁸¹ Br ⁺ (1)		
		Ions do not need charges to score	
	⁸¹ Br ₂ ⁺ (1)	the mark but REJECT if charge is	
		incorrect (e.g. 2+)	
		lons do not need to be explicitly	
		assigned to peaks	
		ALLOW descriptions of ions e.g. 'an	
		ion/molecule with two ⁷⁹ Br' etc.	

2(f)	1 st Mark, probability of 158 peak	3
	158 <i>m</i> /z: Chance of 2 x ⁷⁹ Br = 0.5 x 0.5 = 0.25	
	2 nd Mark, probability of 160 peak	
	160 <i>m/z</i> : Chance of 79 Br ⁸¹ Br and 81 Br 79 Br =	
	0.5 x 0.5 + 0.5 x 0.5 = 0.5	
	3 rd Mark, probability of 162 peak	
	162 <i>m</i> /z: Chance of 2 x ⁸¹ Br = $0.5 \times 0.5 = 0.25$	

Question	Answer	Additional Guidance	Mark
3(a)	Condense the air (into a liquid) (1)	ALLOW turn into liquid/cool to	2
		liquid. Must be clear the air is	
	(Fractional) distillation (1)	being turned into liquid	
		M2 dependent on M1	
	OR		
	Cool air down until first gas/oxygen/nitrogen condenses (1)	Must be clearly a two-step process	
		to separate the gases.	
	Then cool further until second gas/oxygen/nitrogen condense (1)		
3(b)	Increase the rate/make the reaction faster (1)	ALLOW form the product faster	1
. ,	OR		
	Increase yield of/amount of NH ₃ produced (1)	ALLOW move position of	
		equilibrium to the right/products	
3(c)	4 NH ₃ + 5 O ₂ \rightarrow 4 NO + 6 H ₂ O (1)	ALLOW multiples	1
3(d)	N ₂ O ₄ (1)		1

3(e)	Neutralisation (1)		1
3(f)	1 st Mark, correctly identifying the mass of N and the RAM of NH ₄ NO ₃ :RFM(NH ₄ NO ₃) = $(14 \times 2) + (1 \times 4) + (16 \times 3) = 80$ ANDN in NH ₄ NO ₃ = $2 \times 14 = 28$	The values 80 and 28 do not need to be explicitly calculated to score M1 and M2 respectively.	2
	2 nd Mark, correctly calculating the % of N by mass: 28/80 = 35%	M2 must be a percent and not a decimal 14/80 = 17.5% scores 0	
3(g)	1st Mark, total mass of the mixture: (14 x 2) + (1 x 4) + (16 x 3) + (31 x 2) + (16 x 5) + (39 x 2) + 16 = 316 2 nd Mark, total mass of N, P, and K:	The values 316, 28, 62, and 78 do not need to be explicitly calculated to score M1 and M2 respectively.	3
	N: 14 x 2 = 28 P: 31 x 2 = 62 K: 39 x 2 = 78		
	3 rd Mark , percent of N, P, K individually or combined: N: 28/316 = 8.9 % P: 62/316 = 19.6 % K: 78/316 = 24.7 %	ALLOW ECF for M3 only. M3 must be a percent and not a decimal. ALLOW any level of precision.	
	OR		
3(h)	$(28 + 62 + 78)/316 = 53.2 \%$ $2 \text{ NH}_4\text{NO}_3 \rightarrow 2 \text{ N}_2 + \text{O}_2 + 4 \text{ H}_2\text{O}$		2
	Correct formulae (1) Correctly balanced (1)	ALLOW multiples M2 dependent on M1	

3(i)	1 st Mark, conversion of mass of NH ₄ NO ₃ to g OR conversion of energy to J/kg:	The values M1 do not need to be	2
	2,750,000 kg x 1000 g kg ⁻¹ = 2,750,000,000 g	explicitly calculated	
	1673 J g ⁻¹ x 1000 g kg ⁻¹ = 1,673,000 J kg ⁻¹		
		ALLOW any correct SI prefix or with	
	2 nd Mark, correct calculation of energy released:	or without standard form.	
	2,750,000,000 g x 1673 J g ⁻¹ = 4.60 x 10 ¹² J	ALLOW missing or incorrect unit	
	OR	Correct answer with no works	
	2,750,000 kg x 1,673,000 J kg ⁻¹ = 4.60 x 10 ¹² J	scores 2	
		ALLOW precision from 2 sf.	