Junior Chemistry Challenge 2024

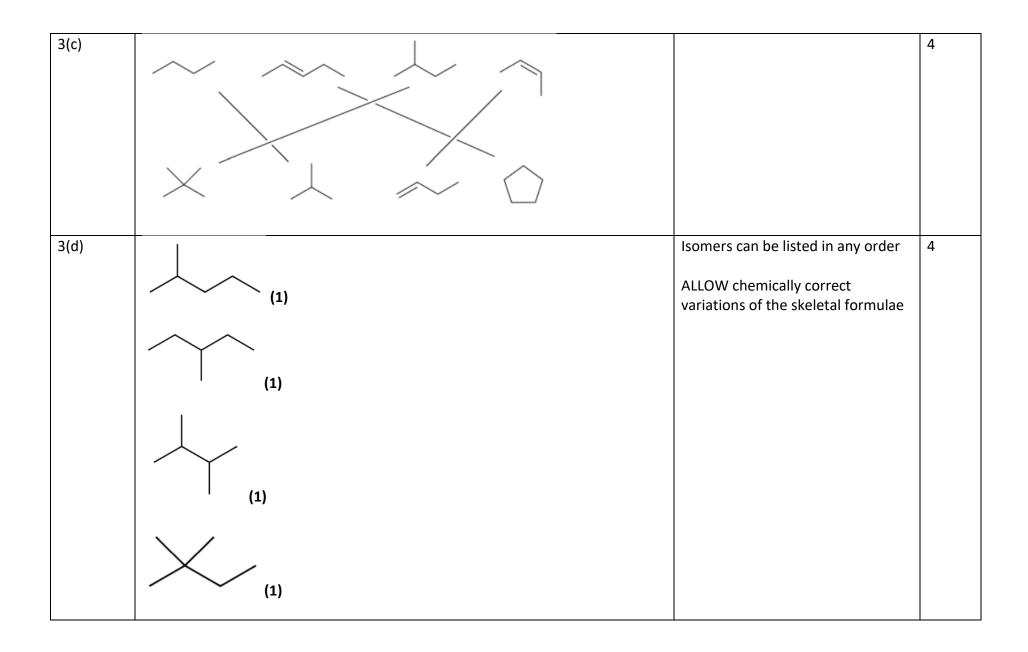
Mark Scheme

Question 1 – Multiple Choice

- a) **C** 5
- b) **E** Cs
- c) **B** C₇H₈
- d) $\mathbf{C} \sqrt{10}$

- f) **A** ZnS
- g) **C** 3
- h) **E** Reacts vigorously with reducing agents.
- i) **B** 1.8 cm

j) **E** – 0.9%


 e) D – From Na to Al an additional electron is lost to the delocalised electrons increasing the attraction between the electrons and the metal cations.

Question	Answer	Additional Guidance	Mark
2(a)(i)	$Ag^+ + e^- \rightarrow Ag$ (1)	Equations do not have to be	2
	$Mg \rightarrow Mg^{2+} + 2e^{-}$ (1)	labelled Reduction/Oxidation.	
		IGNORE even if incorrect.	
2(a)(ii)	$Fe^{3+} + 3e^{-} \rightarrow Fe$ (1)		2
	$AI \to AI^{3+} + 3e^{-}$ (1)	ALLOW multiples. Electrons do not	
		have to be balanced between half-	
2(a)(iii)	$2H_2O + 2e^- \rightarrow 2OH^- + H_2$ (1)	equations	2
	OR		
	$2H^+ + 2e^- \rightarrow H_2$ (1)	IGNORE state symbols	
	$Na \rightarrow Na^+ + e^-$ (1)		
2(b)	At least one arrow going from the Zn to the Cu on the wires (1)	IGNORE arrows on other parts of	1
		the diagram e.g. salt bridge	

2(c)	 Two from: Cu²⁺ solution/Cu²⁺ (aq)/CuSO₄ (aq)/Cu²⁺ decolourises/goes from blue to colourless (1) 	REJECT if an incorrect colour is given.	2
		ALLOW gets less blue.	
	• Zn metal/electrode gets smaller/degrades/disintegrates OWTTE (1)	REJECT if observation refers to changes in mass/weight.	
	Cu metal/electrode gets bigger/grows/enlarges OWTTE (1)	REJECT a generic statement e.g. 'the metals become smaller'	
2(d)	(-) 2.12 x 10 ⁵ (J) (1) OR (-) 212,000 (J) (1) OR (-) 212 kJ (1)	ALLOW any SF except 1SF ALLOW positive or negative answer ALLOW if no unit given but REJECT incorrect unit. Unit MUST be given if SI prefix used.	1
2(e)	 Energy released by the reaction <u>doubles</u> (1) Amount of charge/electrons transferred <u>doubles</u> (1) Therefore, voltage stays the same (1) OR Each electron still transfers the same amount of energy (because the reactants are the same) (1) Energy per charge is the same/charge on an electron doesn't change (1) Therefore, voltage stays the same (1) 	REJECT increase for first two pointsMP3 dependent in MP1 and MP2(e.g. 'voltage stays the same', alone scores 0)For MP3 ALLOW ECF from MP1/2(e.g. 'energy doubles, change transferred stays the same, then voltage doubles'. Would score MP1 and MP3)	3

2(f)	Any value greater than +2.00V and less than +3.21V (1)	ALLOW without + and/or V	2
	Because Mg is less reactive than Ca and more reactive than Al (1)		
	OR	ALLOW +3.21V because Mg is in	
	Because Mg is between Ca and Al in the reactivity series (1)	the same group as Ca for 1 mark.	

Question	Answer	Additional Guidance	Mark
3(a)		ALLOW chemically correct variations of the skeletal formulae	3
		REJECT:	
	Cl (1)		
3(b)	C ₅ H ₈ (1) C ₆ H ₁₂ (1)	Elements can be listed in any order	4
	C ₃ H ₈ O (1) C ₅ H ₉ OCl (1)	ALLOW C ₃ H ₇ OH ALLOW C ₄ H ₉ COCI	

